
Software Security:
Dealing with C and C++

Dan Wallach

Rice University

Problems with C and C++

No memory safety / type safety guarantees
Cast pointers to integers

No bounds checking on arrays
Unitialized contents from malloc()
Reuse memory after free()

Results?
Segmentation fault
Core dumped

But we need C and C++

Huge installed base of software / libraries

Supports every possible platform

Mature development tools

Security issues?
Buffer overflow attacks

Malformed input crashes

Excessive trust of input (SQL injection, etc.)

Anatomy of a buffer overflow

void LogText(char *message) {
char buf[MAXBUF];

sprintf(buf, “%s %s\n”,
getdate(), message);

...
}

MAXBUF is huge.
No sweat.

Attacker: what if
message is larger

than MAXBUF?

System memory
Stack Pointer

Frame Pointer

main()
int argc;
char **argv;

System memory
Stack Pointer

Frame Pointer
Extra local vars

main()
int argc;
char **argv;

Function call main()
int argc;
char **argv;Stack Pointer

Frame Pointer
Extra local vars

Saved registers
Saved stack pointer
Saved frame pointer
Saved program counter

LogText()
char *message;

Function call main()
int argc;
char **argv;Stack Pointer

Frame Pointer
Extra local vars

Saved registers
Saved stack pointer
Saved frame pointer
Saved program counter

LogText()
char *message;

char buf[MAXBUF];

Normal message main()
int argc;
char **argv;

Extra local vars

Saved registers
Saved stack pointer
Saved frame pointer
Saved program counter

LogText()
char *message;

char buf[MAXBUF];

GET /index.html

sprintf(buf, …)

GET /index.html

Attack message main()
int argc;
char **argv;

Extra local vars

Saved registers
Saved stack pointer
Saved frame pointer
Saved program counter

LogText()
char *message;

char buf[MAXBUF];

...
New stack pointer
New frame pointer
New return address
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
GET /xxxxxxxxxxxxxxx

...
New stack pointer
New frame pointer
New return address
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
GET /xxxxxxxxxxxxxxx

Buffer overflows

Overwrite return address
Option #1: call into your own buffer

Option #2: set up a stack frame, call elsewhere
system(“cat /etc/passwd | mail…”)

Attackers don’t need source code
Plenty of attacks on Windows

Generate garbage input, inspect crash dumps
(“fuzzing”)

Solution: good string hygiene

Never use sprintf(), gets(),
strcpy() or other functions that don’t
know buffer sizes
Instead, see snprintf() or
asprintf(), strncpy(), ...

But what if you forget something?

Lots and lots of solutions…

This lecture

Runtime solutions (e.g., StackGuard)

Compile-time static analysis

Software engineering for security

Runtime solutions

Started with StackGuard [Cowan et al., 1998]
“Canaries” surround the return value

Validate the canaries before returning

Standard feature on modern C++ compilers
gcc 4.1 has –fstack-protector
MS Visual Studio 7.0 has /GS flag

Modest performance cost
Enabled by default in OpenBSD

StackGuard discussion

Defeats code injection and return-to-libc
attacks

No protection against heap overflows

Cannot patch pre-compiled binaries

More subtle attacks may still work (e.g.,
modify a code pointer on the stack)

In C++, lots of code pointers around

No eXecute page bits

Recent x86 architectural feature
(existed on many other CPUs for years)

Code pages must be marked executable

Executable pages are not writable

Stack is not executable

Eliminates attacks that inject code

Does not prevent return-to-libc attacks

Some programs may break

Other approaches

Grow the stack up instead of down
Doesn’t work so well on x86

Address space randomization
Change locations of libraries / functions

Works well with a sparse 64-bit address space

Brute force attacks possible with 32-bit addrs

Use a better programming language
More on this later…

Static analysis

Growing industry (Coverity, Fortify, ...)

Many open source tools
C/C++: BOON, MOPS, CQual, splint, ...

Java: ESC/Java2, FindBugs

Complete program coverage
Tools will follow obscure code paths

Non-trivial programmer overhead
Annotating code to help the scanner

Studying output, dealing with false positives

Example: user/kernel data analysis

CQual uses data flow analysis
Can identify use of “tainted” data in an
untainted context

Reading user data in Linux kernel
Proper behavior: Copy data from user to
kernel space with safe routine, then parse

Annotations: label user pointers on the way in,
forbid dereferencing

Other analyses

Untrusted (network) data never used …
as printf format string

as part of an SQL command

as part of HTML output (cross-site scripting)

Incorrect malloc / free behavior

Y2K bugs

Device drivers following rules

Microsoft device driver dev tools

PREfast For Drivers (PFD)
Lightweight and fast (runs in minutes)
Easy to use early in development – start early

Use on any code that compiles
Limited to a procedure scope
Works on any code, C and C++
Finds many local violations

Static Driver Verifier (SDV)
Extremely deep analysis (runs in hours)
More useful in the later stages of development

Requires complete driver
Works over the whole driver

Limited to WDM and to C (more planned)
Finds deep bugs

Static analysis summary

Powerful tools now available (open and
commercial)

Excellent at finding obscure bugs

Still an area of active research

Intrusions happen

What do you do after an intrusion?
Restore from backups?

Identify / block attack route?

How do you detect an intrusion?

What if the intrusion compromises the
whole operating system? (Rootkits)

Intrusion detection systems

Host-based (system call tracing)
Antivirus software

Network-based (packet sniffing)
Email scanners

Firewalls

Large industry + lots of open software

The value of honeypots

Honeypot: a machine/service expecting no
legitimate traffic

No worries about false positives

Any activity is intruder activity

Save everything (useful for forensics)

State of the art: zero-day attack detection
Detect new attacks fast

Propagate attack signatures quickly

Why not just use a safe language?

Checks include:
Buffer overflows
Cross-site scripting
Denial of service
File corruption
Format string
vulnerabilities
Improper bounds
checking
Insecure access control
Integer overflows
Memory corruption
Out-of-bounds array
access
Privilege escalations
SQL injection

Remaining issues:

Cross-site scripting
Denial of service

Insecure access control

Privilege escalations
SQL injection

Architecting security

It’s not about the programming language

Basic principles, best designed from the start
Always check your input

Separation / modularity

Least privilege

Threat modeling / analysis

Software engineering processes

Don’t trust your input

A huge source of real-world problems
SQL injection attacks

Cross-site scripting attacks

Format string / buffer overflow attacks

Don’t even trust “trusted” input
Configuration files

Easiest change you can retrofit to an
existing system.

Digresion #1: Avoid mobile code

Temptation: use general-purpose PL
interpreter as file format

Postscript vs. PDF

If necessary, remove dangerous primitives
Microsoft print driver, rasterizing example:

No need for file access
Limited font loading functionality

No need for network access

Separation / modularity

Fault containment
Watchdog processes, etc.

Narrow interfaces
Avoid fragile class hierarchies

Easier to replace / re-engineer components

Wrappers on legacy software?

Least privilege

Most valuable idea in software architecture

Different modules need different privileges

Reduce the size of trusted components
Less code to audit for correctness

Limit damage from a security compromise

Least privilege with OS features

Separate user ids for different programs
Limited privileges for most users

Example: postfixmail transport agent

Digression #2: setuid, chroot

Temptation: run as root, emulate user
1. stat() file owner / permissions

2. Read/write as superuser

Risk: attacker may replace file

(Time of check to time of use attack)

Preferable: setuid() to the user

Related: use chroot() rather than parsing
filenames to restrict a directory

Threat modeling

What’s going to go wrong?
Hardware failure
Software corner-case bugs
Flash crowds (“Slashdot effect”)

Adversaries
Theft of service (rootkits / zombies)
Read / leak secrets (credit card numbers)
Write / modify data
Insider threats?

Plan in advance!

Software engineering process

Any process is better than no process.

Software version control

Unit testing

Code reviews

Pair programming

Rapid prototyping

Any good idea can be overdone.

Design patterns

Duff’s Law

“Whenever possible, steal code.”

Somebody else maintains it
Example: OpenSSL, rapid security fixes

Avoid making subtle mistakes
Notable problem with crypto & network
protocols

More time on your own code

Example: Banks / e-Commerce

Hardware failure
Time is money; aggressive replication

Obscure bugs
Load testing with real traces

“Fuzz” testing (random inputs)

Flash crowds
Over-provision + estimates of worst-case

Service prioritization?

Bank adversaries

Theft of service
Aggressive / annoying firewalls & IDS

Human monitoring

Regularly reinstall computers from scratch

Read / write secrets (i.e., steal money)
“Red Team” (adversarial) code analysis

Online auditing / redundant records

Insider threats
Separation of user privileges

What about…

Aircraft control software?
No malicious users / developers

Higher reliability requirements

Consumer operating system?
Uses / configurations you can’t anticipate

Importance of crash recovery

Voting machine software?
Every person (developers, poll workers, voters)
may be malicious!

(More on voting machines, later)

Upcoming lectures

Java architectures for safety / security
Least privilege with PL mechanisms

Distributing your system over a network
Using structured p2p overlays

	Software Security: Dealing with C and C++
	Problems with C and C++
	But we need C and C++
	Anatomy of a buffer overflow
	System memory
	System memory
	Function call
	Function call
	Normal message
	Attack message
	Buffer overflows
	Solution: good string hygiene
	Lots and lots of solutions…
	This lecture
	Runtime solutions
	StackGuard discussion
	No eXecute page bits
	Other approaches
	Static analysis
	Example: user/kernel data analysis
	Other analyses
	Microsoft device driver dev tools
	Static analysis summary
	Intrusions happen
	Intrusion detection systems
	The value of honeypots
	Why not just use a safe language?
	Architecting security
	Don’t trust your input
	Digresion #1: Avoid mobile code
	Separation / modularity
	Least privilege
	Least privilege with OS features
	Digression #2: setuid, chroot
	Threat modeling
	Software engineering process
	Duff’s Law
	Example: Banks / e-Commerce
	Bank adversaries
	What about…
	Upcoming lectures

